Geometric Non-Linearity and
Total Lagrangian
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(b} Materially-nonlinear-only (infinitesimal displacements, but nonlinear
stress-strain relation)
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(c} Large displacements and large rotations but small strains. Linear or
nonlinear material behavior
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(d) Large displacements, large rotations, and large strains.
Linear or nonlinear material bahavior
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(e} Change in boundary condition at displacerment A




EXAMPLE 6.1: A bar rigidly supported at both ends is subjected to an axial load as shown in
Fig. E6.1(a). The stress-strain relation and the load-versus-time curve relation are given in
Figs. E6.1(b) and (c), respectively. Assuming that the displacements and strains are small and
that the load 1s applied slowly, calculate the displacement at the point of load application.

{a) Simple bar structure
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Figure E6.1 Analysis of simple bar structure
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Figure E6.5 Infinitesimal volumss at times 0 and r



Deformation Gradient

where ¢V is the gradient operator
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EXAMPLE 6.6: Consider the element in Fig. E6.6. Evaluate the deformation gradient and the
mass density corresponding to the configuration at time ¢.

The displacement interpolation functions for this element were given in Fig. 5.4. Since the
%%, %x2 axes correspond to the r, s axes, respectively, we have

Ry = 3(1 + "x)(1 + %x); hy = 3(1 = %x)(1 + %xy)

hy = 3(1 = %) = ®xa); he = 4(1 + %x)(1 = %x2)

and %::_l: = ji(l + %xa); :DTI = ‘i“ +Ox)
Bl Belong
jui; = %{1 + %) ;}: = %(I — ’x1)



Thickness = 1¢e¢m
Density att=0is % | °x;

I
1 \ I; 1o
a% | ;/ g%
P T B
2 em [ I r
X
d’s iI' d's 1
f.l'
i
!
{

Figure E6.6 Four-node element subjected to large deformations
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Now we use X = > by 'xi

k=1
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and hence, —_— = xk
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The nodal point coordinates at time t are
'x1 = 2; ‘xi = 1.5 xi = =1;

= -1 ‘x3 = —1; ‘xt
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Hence,

0= A+ 2@ = (1 + 2= = (1= %)= 1) + (1 = =)
= i[i + Ox2)
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so that the deformation gradient is

1[G+ (1 + )
¢x = 4[;-11 +0) 10+ ﬂxa]

and using (6.26), the mass density in the deformed configuration is

. 32°%
P= B+ %)0 + %x) — (1 + %) + °x)




EXAMPLE 6.7: The stretch ‘A of a line element of a general body in motion is defined as
'tx = d's/d%s, where d% and d's are the original and current lengths of the line element as shown
in Fig. E6.7. Prove that )\ = ©n74C °n)2
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Figure E6.7 Stretch and rotation of line elements



Prove that '\ = (°n7{C °n)!/2

where °n is a vector of the direction cosines of the line element at time 0. Also, prove that

considering two line elements emanating from the same material point, the angle ‘6 between the
line elements at time ¢ is given by

Opa? rC Dﬁ
cos 0 = —2= (b)
TAA

where the hat denotes the second line element (see Fig. E6.7).




10 prove (a), we recognize that
(d's)? = d'x? d'x; d'x = {X d%

so that using (6.27), d's)* = d°%%T §C d°%
dox” | d°
Hence, 22 = d:s orcc_i_ﬁl_‘
: d’x
and since on = TN
we have ‘A = (°n7 {C °n)!/2

To prove (b) we use (2.50)
d'x” d'x = (d's)(d'§) cos 0

o dO%T X7 §X d%
Hence, cos ‘6 = @9)d'd
cos ‘0 = n$C
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1I 'WC dpPply (a) dlld (0) 10 Lo 1HKC CICIDCIIN Gcneled Ul rlg. 0.0, W O0Uldll al "X — U,
%%, = 0 (see Example 6.6)

Thickness = 1 ¢m

Density att=01is % Jr°x2
o~ 112525 7.25 | N
6€ = 16[ 7.25 21.25] 1. pjf/ﬂ |
a% /d _________
0f | o d'sz
Hence, using (a), A = 1.256; A = 1.152 A
and using (b), cos ‘@ = 0.313; 9 = T71.75° T

Therefore, the angular distortion between the line elements d°s and d°5 due to the motion from
time O to time ¢ 1s 18.25 degrees.



EXAMPLE 6.9: Consider the four-node element and its deformation shown in Fig. E6.9.
(a) Evaluate the deformation gradient and its polar decomposition at time £. (b) Assume that the
motion from time ¢ to time ¢ + Az consists only of a counterclockwise rigid body rotation of
45 degrees. Evaluate the new deformation gradient.
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Figure E6.9 Four-node element subjected to stretching and rotation

To evaluate the deformation gradient at time #, we can here conveniently use X = {R3U,
where the hypothetical (or conceptual) configuration 7 corresponds to the stretching of the fibers
only. Hence,
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and oX = v3 )
2 3V3
3 4

Of course, the same result is also obtained by writing ‘x, in terms of ®x;, i = 1,2; 7 = 1, 2, and
using the definition of §X given in (6.19).



- is one point tensor. So it transforms as

Let us next subject the element to the counterclockwise rotation of 45 degrees. The
deformation gradient is then

2 3
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C = X'X = I 2
L = [
X =VR _[a’xj]

V = RUR’ L = XX

The velocity gradient L is defined as the gradient of the velocity field with respect to
the current position ‘x; of the material particles,

The symmetric part of L is the velocity strain tensor D (also called the rate-of-deformation
tensor or stretching tensor), and the skew-symmetric part is the spin tensor W (also called
the vorticity tensor). Hence,

L=D+W (6.41)



or in component form (with super- and subscripts)
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Figure E6.11 Second Piola-Kirchhoff and Cauchy stresses in two-dimensional action
The first Piola-Kirchhoff stress tensor is given by §S X7



However, we shall use the Green-Lagrange strain tensor frequently and now want to
define the appropriate stress tensor to use with this strain tensor. The stress measure to use
is the second Piola-Kirchhoff stress tensor ¢S, which is work-conjugate with the Green-
Lagrange strain tensor.*

Consider the stress power per unit reference volume 'J ‘s + ‘D,® where 't is the Cauchy
stress tensor and J = det {X. Then the second Piola-Kirchhoff stress tensor 48 is given by

Jip oD = ¢S - € (6.66)
To find the explicit expression for ¢S, we substitute from (6.63) to obtain
‘Jir D = §S - ((XT'D ¢X) (6.67)

Since this relationship must hold for any ‘D, we have®

(6.68)




We note that the components of the Green-Lagrange strain tensor and second Piola-
Kirchhoff stress tensor do not change when the material is subjected to only a rigid body
translation because such motion does not change the deformation gradient.
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Figure 3.7 An element sheared
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To determine the rate- of-deformatjon, we will use (3.3.18), L=F-F - so we first have to
determine F, F and F-' . These are

1 at : 0 a I —ar
| e e 1 — , F'= :
[O | J [O O} [O | J (E3.7.2)

The velocity gradient and rate-ot-deformation are then given by (3.3.10):
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The Green strain is obtained by (3.3.5):
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,=0. However, £,, is small when the constant a



wzston 2 to configuration 3:
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W mzzion 3 to configuration 4

B D= X+a(l-0)Y, yX,H=(01+b), 2<7<3,, t=7-2.  (E3.7.6a)
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- mcwerution 4 to configuration S:

X(Xan)=X, X, )=(+b=~bt)Y, 3<F<4 t=F-3 (E3.7.7a)
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L=F-F':l+bl . [8 ObJ, D=L (E3.7.7¢)




reen strain in configuration 5 vanishes, since at T = 4 the deformation gradient is the
znsor, F=1. The time integral of the rate-of-deformation is given by
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* Integral of D is not zero at end of deformation when the body has
returned to its original configuration.
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* First Piola is modified according to area on which it is acting. For P11
the area is not changed so it is 10. For P22 the area has changed.

* S0s22 x 3=P22 x 2, for the force to be same.

 Now Cauchy shear stress is symmetric, but acting on different faces it
will give different force and therefore First Piola stress will be
unsymmetric.



* HW 6.4, 6.21,6.23,6.28















Green Lagrange Strain Tensor
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Green Lagrange Incremental Strain Tensor

2 o&;;d “x;d °x;=( *ds)? — ('ds)?
=[( *ds)? — (°ds)?] = [( "ds)* — ( °ds)?]
=|2(2E;; — $E;;)|d °x;d x;
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* Strain and Stress measures between Configurations

* To determine the final configuration C from a known initial
configuration C, is to assume that the total load is applied in
increments so that the body occupies several intermediate
configurations, C.(i=1,2,3....), prior to occupying the final
configuration.

* In determination of an intermediate Configuration C,, the Lagrangian
description of motion can use any of the previously known
configurations C,, C, ...... C. , as reference configuration.



* Total Lagrangian C, is reference

* Updated Lagrangian C., is reference where C_, is the latest known
reference configuration.

1) C, the last known configuration and all variables upto this configuration
are known

2) We need to develop a formulation for determining the displacement field
of the body in the current deformed configuration C,

* It is assumed that deformation of the body from C,to C, due to an
increment in load is small and accumulated deformation of body from to
can be arbitrarily large but continuous (i.e. neighbor-hoods move into
neighbor-hoodsy



