Dynamics



* 3 is the magnificatioh factor i.e ratio of dynamic to static response

* o is the natural frequency whereas capital omega is the forcing
frequency,
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Central Difference Method

The central difference method is based on finite difference
expressions for the derivatives in the equation of motion.
For example, consider the velocity and the acceleration
attime t:

The acceleration can be expressed in terms of the
displacements (using a Taylor series expansion) as:




The acceleration can be expressed as:

d, | =[M]"({F} - [K]{d,})
M]{d,..} =2[M]{d,} -[M]{d,_,} +({F } ~[K]{d,})(at)’
[M]{d,..} = (at) {F}+| 2[M]-(at) [K]|{d,} - [M]{d,_,]

To start the computation to determine {d,-+1}, {dm}, and {d;_1}
we need the displacement at time step / -1.



Using the central difference equations for the velocity and
acceleration and solving for {d,}:

(At)’
2

{d,}={d,}-(at){d,} +{d]



Procedure for solution:
1. Given: {do},{do},and {F.(t)!

2. If the acceleration is not given, solve for {do}

(do} = [M] " ({Fo - [K]{co})

3. Solve for {d ,} at t = -At
{d} ={dy} —(At)|dy} +{d,]|

4. Solve for {d,} at t = At using the value of {d_,} from Step 3
[M]{d,..} = (at)’ {F.}+| 2[M] (At [K] |{d} ~[M]{d]
o} =[] (A)" Ry + [ 2[M] - (at)* [K] [{al} - [M] (]

(At)?




5. With {d,} given and {d,} determined in Step 4 solve for {d,}

(d,} = [M] " {(at)" (R} <] 2[M] - (at)* [K] |{a} - [M]{f }

6. Solve for {51} : {51} = [IVI]_1 ({E} —[K]{d1})

7.Solve for {d,f:  {d,}= 1} ~{c}

8. Repeat Steps 3, 6, and 7 to obtain the displacement,
acceleration, and velocity for other time steps.



Time-Dependent One-Dimensional Bar - Example

Consider the one-dimensional bar system shown In the figure
below. Fin

1000 Ib -

f—— F(1)

Ll

[

Assume the boundary condition {d,,} = 0 and the initial
conditions {d,} = 0 and {do} -0

Let p = 0.00073 Ib-s?/in*, A=1in? E =30 x 10° psi, and
[ =100 in.



The bar will be discretized into two elements as shown below.

0 O | S—

& i L
The elemental stiffness matrices are:
1 2 2 3
AE| 1 -1 AE| 1 -1
L ZTL 1 } [ ZTL 1 }
The global stiffness matrix is: "1 -1 0
K] :¥ 12 1

] O -1 1 ]
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The lumped-mass matrices are:
1 2

ALI1T O AL
[m(”]:pT{o J |- PAL

The global lumped-mass matrix is:
pAL

M)=25




Substitute the global stiffness and mass matrices into the global
dynamic equations gives:

1 -1 0][u, 1 0 0)(4,) (R,
AL—E—1 2 -1<u2>+P’§L 0 2 O[i,t=] 0 !
0 -1 1|yl 0 0 1||d] |R()

where R, denotes the unknown reaction at node 1.



For this example, we will use the central difference method,
because it is easier to apply, for the numerical time integration.

It has been mathematically shown that the time step At must be
less than or equal to two divided by the highest natural
frequency.

For practical results, we should use a time step defined by:

Atég[ 2 ]
4 @

max




* An impact problem has high frequencies in the forcing signal which
effect the response. So by keeping dt small we are also ensuring more
of these frequencies are participating.



An alternative guide (used only for a bar) for choosing the

approximate time step is: Af = L
c

X

where L is the element length, and ¢, = E%
Is the longitudinal wave velocity.

Evaluating the time step estimates gives:

Atzg 2 = 1.9 3=0.4O><10_38
D 3.76 x10

At = L _ 100 =0.48x10°s

c, \/30 ><107
0.00073




Applying the boundary conditions u, =0 and u, =0 and

simplifying gives:

& } {i}m 2;)0,25 {?} {272100}%2

3. Solve for d , at f = -At

(A1} = {dy ] — (46) )} + | 2

2
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4. Solve for d, at t = At using the value of d_, from Step 3

() = [M] " {(a0)° (R} + [2[M] - (a0)° [K] ] dl} - [M] e
R (R E e P
(0'25“0_3)2(30“04){21 11H{8}0.0273E ?HO.BSBOMDSH

[w] 2 [xn o0 0 I 0
u,/ 0073/ 0 1]]0.0625x10°] [0.0312x107

41

0
d — 4 ¢l
u,), [0.858x10




Repeating Step 6. Solve for {dz}

(d.| = [M] " ({F.} - [K]{d.})
&2 - 0.0273% ?}{{10000}(30“04){—21 11}{02;2291:1?:}}

G, [10,500)
ld, | { 1600/ /5

. 2




Repeat Step 7:  Solve for{dz}

j1096x10

15397 %107

i

j 0

|0.858 %107

)

2(0 25><10—3)

[2.192
~9.078

1%



Newmark’s Method

Newmark’s equations are given as:

(d._,! {d!.}+(m)[(1_;/){d,,}+;/{

19

6.

{df,} +(At){df} + (ALY [(5—/}){0';} +13{df—1}:|

I
2

where ffand yare parameters.

The parameter fis typically between 0 and %4, and yis often
taken to be 7.

For example, if # =0 and y = "2 the above equation reduce to
the central difference method.



To find {d,, } first multiply the above equation by the mass matrix
[M] and substitute the result into this the expression for
acceleration. Recall the acceleration is:

{df =[M]"({F,} - [K]{d)})
The expression [M){d.,} Is:
[M]{d,,} =[M]{d,} +(At)[M]{d, | + (At} [M] (- 5){d|
A [{FLf = [K]{daf

Combining terms gives:
([M]+ B(At [K]){d,..} = B(ALY {F,, .} +[M]{d,}

+(A)[M]{d, | +(At)*[M](1-5)|d,}




Dividing the above equation by A(At)? gives: [K']{d..,} = {F'..}

where:

K] =[K]+

(F' b ={F.}+ /}Elrz])[ ,}+(At){d,.}+(%—/f)(m)z{d,.}}

7 M)

The advantages of using Newmark’'s method over the central
difference method are that Newmark’'s method can be made
unconditionally stable (if /=72 and y= 72) and that larger time
steps can be used with better results.



Newmark’s Method

Procedure for solution:
1. Given: {do},{do},and {F.(t)}

2. If the acceleration is not given, solve for {do}
(o} =M ({Fo} - [K]{d})

3. Solve for {d,}att=0
[Kidyj = 1F"



4. Solve for {d1} (original Newmark equation for{'dM} rewritten
for {dm} ):

{d1} = ﬁ(;f)z [{d1} _{do} _(At){do} _(At)z (%_/}){do}}
5. Solve for {d1}

d,} =1{d,} + (At)[(1 ~y){dy} + ;,/{d;}}

6. Repeat Steps 3, 4, and 5 to obtain the displacement,
acceleration, and velocity for the next time step.




Frequencies and mode shapes of a cantilever beam
2£l[ 6 *3LJ
ST S ar?

M, = 2= :
210 —11L 2L

Letting s = 2£//L” and m = pAL/210
6(s — 13mw?) —L(3s — l1lmw}?) || & _ 0|
—L{(3s — llmw}) 2L (s — mw]) P, 0

35m*w; — 102msw? + 352 = 0
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Symmetric and Antisymmetric modes
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' symmetric modes
antisymmetric modes.
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g2kl 6 3¢ N = PAE[ 156 —13¢
03¢ 28 "Ta0 | 130 4

6(s — 26mw?) €(3s + 13mw.-2)]
H.‘=S_ (0;2Mr= [

€35 + 13mw?)  26%(s — 2mw?)

s = 2EI/€*andm = pA€/420

455m2w? — 414msw? + 35> =0



w! = 0007305~  w}=0.9026 — (e)
m m

Substituting the known values of s and m and taking square roots. we find that

9909 [EI R =g 110.1 JEI ®
T Npa 7L oA
where L = 2{. When these formulas for the angular frequencies are compared with exact
values [9], the errors are found to be e, = +0.40% and e; = +24%.

We obtain mode shapes corresponding to @, and w; using the first column of the
adjoint matrix HY, as follows:

26%(s — 2mw?)
Hj = (g)
' [-((3: + 13mw?) . »
Substitution of w{ and w3 from Egs. (e) into this column produces
4 4
D, = D, = (h
' [—1 .570] ’ [9.149] )

These mode shapes appear in the left-hand portion of Fig. 3.16(b). Of course, each of
them represents half of a symmetric mode shape for the whole beam.

Considering now the antisymmetric case in Fig. 3.16(c), we form the stiffness
matrix for the free displacements D; and Dy as

2e1[2 1 .
=% 5 2] @
and the consistent mass matrix is

_pAl[ 4 -3 .
« M, = 420 | -3 4 §))

Then tﬁe characteristic matrix becomes

2s — 2mw?) s+ 3mw!?
H, = 2 2 (k)
s + 3mw; 2(s = 2mw?)

where s and m are the same as before. Expanding the determinant of H; and setting it
equal to zero gives the characteristic equation

Tmiw! — 2msw? + 352 =0 0
from which the roots are
Fast Gt (m)
Tm m

Proceeding as before, we find the angular frequencies to be

o o882 [E _2008 [El @)
- Lz pA Wy Lz pA

for which the errors are +11% and +27%.



Mode shapes are given by the first column of Hf, which is
He. = 2s — me,-‘,) (©)
—(s + 3mw;)

Substituting w3 and w3 from Egs. (m) into this vector yields

-] o]

These mode shapes are displayed in the left-hand part of Fig. 3.16(c), where each of them
depicts half of an antisymmetric mode for the whole beam.



Abaqus

Mi=P -1

ii|y = (M)~ (P =1I)|in

: ) (At|iepan + Atly) .
“||:r+=§‘r]="|{r-%,l} 5 i|s)-
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1. Nodal calculations.
a. Dynamic equilibrium.
i) = M~ (P — L)
b. Integrate explicitly through time.

At At
'llf.l:!-'.%_r] — lll[.;_a._l_f_] + { ||'+..3I';+ [“:I 'I].|I

Wians = Wiy + Afjpanl
{f+_"'i||, [E) [t A0 {lr+%:|



