Shells

Figure 5.33 Nine-node shell element; also, definition of orthogonal \bar{r}, \bar{s}, t axes for constitutive relations

EXAMPLE 5.32: Consider the four-node shell element shown in Fig. E5.32.
(a) Develop the entries in the displacement interpolation matrix.
(b) Calculate the thickness at the midpoint of the element and give the direction in which this thickness is measured.

Figure E5.32 Four-node shell element

$$
\begin{aligned}
& \lceil 1\rceil
\end{aligned}
$$

$$
{ }^{\circ} \mathbf{V}_{1}={ }^{0} \mathbf{V}_{1}={ }^{0} \mathbf{V}_{\}}={ }^{0} \mathbf{V}_{1}{ }^{4}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
{ }^{0} \mathbf{V}_{2}={ }^{0} \mathbf{V}_{2}^{2}=\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] ; \quad{ }^{0} \mathbf{V}_{2}^{3}={ }^{0} \mathbf{V}_{2}^{4}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Also,

$$
a_{1}=a_{2}=0.8 \sqrt{2} ; \quad a_{3}=1.2 ; \quad a_{4}=0.8
$$

The above expressions give all entries in (5.112).
To evaluate the thickness at the element midpoint and the direction in which the thickness is measured, we use the relation

$$
\left.\left(\frac{a}{2}\right)^{0} \mathbf{V}_{n}\right|_{\text {midpoise }}=\left.\sum_{k=1}^{4} \frac{a_{k}}{2} h_{k}\right|_{r=s=0}{ }^{0} \mathbf{V}_{n}^{k}
$$

where a is the thickness and the director vector ${ }^{\circ} \mathbf{V}_{n}$ gives the direction sought. This expression gives

$$
\begin{gathered}
\frac{a}{2}^{0} \mathbf{V}_{n}=\frac{0.8 \sqrt{2}}{4}\left[\begin{array}{c}
0 \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]+\frac{1.2}{8}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\frac{0.8}{8}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-0.2 \\
0.45
\end{array}\right] \\
{ }^{0} \mathbf{V}_{n}=\left[\begin{array}{c}
0.0 \\
-0.406 \\
0.914
\end{array}\right] ; \quad a=0.985
\end{gathered}
$$

which gives

Fig. 1. Coordinate systems.
\bar{z}, \bar{s}, t of any point.
A set of tangent vector fo midsurfale are
target to r

$$
\begin{aligned}
& \text { are } \vec{\nabla}_{r}=\frac{\partial x}{\partial r} i+\frac{\partial y}{\partial \gamma} \hat{f}+\frac{\partial z}{\partial r} k_{7} \\
& \begin{aligned}
\text { tor } & =\left(\sum \frac{\partial h_{i}}{\partial x_{s i=}} x_{i}\right) \frac{i}{\sim}+\left(\mathcal{z} \frac{\partial h_{k}}{\partial \gamma} y_{k}\right) j \\
& +\left(\sum \frac{\partial h_{k}}{\partial \gamma} \tau_{k}\right) \frac{k}{7}
\end{aligned}
\end{aligned}
$$

Fe is along iv $\frac{V^{n}}{r}$ at that point i_{α} is along \vec{r} J_{α} is along $\underset{\sim}{c} \times i_{l}$

$$
\begin{aligned}
u_{\alpha}\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right) & =u_{0 \alpha}\left(x_{\alpha}, y_{\alpha}\right)-z_{\alpha} \beta_{\alpha \alpha}\left(x_{\alpha}, y_{\alpha}\right) \\
& =\sum_{k} h_{h} u_{0 \alpha}^{k}+z_{\alpha} \sum h_{k} \alpha_{y}^{k} \\
v_{\alpha}\left(x_{\alpha}, y_{\alpha,}, z_{\alpha}\right) & =v_{0 \alpha}\left(x_{\alpha}, y_{\alpha}\right)-z_{\alpha} \beta_{y \alpha}\left(x_{\alpha}, y_{\alpha}\right) \\
& =\sum_{k} h_{k} v_{0 \alpha}^{k}-z_{\alpha} \sum h_{k} Q_{\alpha}^{k} \\
w_{\alpha}\left(x, y_{\alpha}, z_{\alpha}\right) & =w_{0 k}\left(x_{\alpha}, y_{\alpha} y^{\prime}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{x \alpha}=\epsilon_{x 0 k}-z_{\alpha} \frac{\partial \beta_{x \alpha}}{\partial x_{\alpha}} \\
& \epsilon_{y \alpha}=\epsilon_{y 0 \alpha}-z_{\alpha} \beta_{y_{\alpha}, y \alpha} \\
& \gamma_{x y_{\alpha}}=\gamma_{x y-\alpha}-z_{\alpha}\left(\beta_{x \alpha, y \alpha}+\beta_{y \alpha, x \alpha}\right) \\
& \gamma_{x z \alpha}=-\beta_{x \alpha}+\frac{\partial \omega_{\alpha}}{\partial x_{\alpha}} \\
& \gamma_{y z_{\alpha}}=-\beta_{y \alpha}+\frac{\partial \omega_{\alpha}}{\partial y_{\alpha}}
\end{aligned}
$$

- At any point on shell surface there are 5 dof

2ut V.W

$$
\begin{aligned}
& =\iint \delta \epsilon_{x x} \sigma_{x x}+\delta \epsilon_{y} \sigma_{y \alpha}+\delta \gamma_{x y x} \tau_{x y x}+\delta \gamma_{x x x} \tau_{x e x} \\
& \left.+\delta \gamma_{y 2 d} \tau_{y z} \alpha\right] d r \\
& =\iint\left\{\sigma_{x x}\left(\delta \epsilon_{x o \alpha}-2 \beta_{x>x \alpha}\right)+\sigma_{y x}\left(\delta \epsilon_{y o x}-2 \delta \beta_{x x, x}\right)\right. \\
& +\tau_{x y_{\alpha}}\left[\delta \gamma_{x y_{0}}-2 \delta\left(\beta_{y, x_{\alpha}}+\beta_{z, y_{1}}\right)\right] \\
& \left.+\tau_{32 \alpha}\left[\delta \gamma_{y_{z \alpha}}\right]+\tau_{x x_{\alpha}} \delta \gamma_{x z_{\alpha}}\right] d z d A
\end{aligned}
$$

$$
\begin{aligned}
\int_{A} \delta \epsilon_{x o x} & N_{x x}+\delta \epsilon_{\partial y x} N_{y \alpha}+\gamma_{x y 0} N_{x y \alpha} \\
& +M_{x \alpha}\left(-\delta \beta_{x x x}\right)+M_{y \alpha}\left(-\delta_{p_{x \alpha \alpha} \alpha}\right) \\
& +M_{x y \alpha}\left[-\left(\delta \beta_{x x, x_{\alpha}}+\delta \xi_{z_{x, y \alpha}}\right)\right\} \\
& \left.+\gamma_{x 2} Q_{x \alpha}+\gamma_{y z} Q_{y \alpha}\right\} d A
\end{aligned}
$$

$$
\begin{aligned}
& N_{x \alpha}=\int_{-t_{x / 2}}^{t_{x / 2}} \sigma_{x \alpha} d z \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& Q_{\alpha}=\left\{Q_{x \alpha}\right\}=\left[D_{0 x}[0][0]\right]_{a, 0}^{\gamma_{x z}} \gamma_{42}
\end{aligned}
$$

$$
\mathbf{D}_{m z 1}=\left[\begin{array}{cccccccc}
\frac{E t_{2}}{(1-v v)} & \frac{v E t_{z}}{(1-v v)} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{v E t_{x}}{(1-v v)} & \frac{E t_{x}}{(1-v v)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{E t_{2}}{2(1+v)} & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\mathbf{D}_{l / x}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & \frac{E t_{x}^{3}}{12(1-v v)} & \frac{v E t_{x}^{3}}{12(1-v v)} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{v E t_{2}^{3}}{12(1-v v)} & \frac{E t_{x}^{3}}{12(1-v v)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{E t_{2}^{3}}{24(1+v)} & 0 & 0
\end{array}\right]
$$

$$
\mathbf{D}_{s x}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \frac{E t_{x}}{2.4(1+v)} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & E t_{2} \\
& & & & & & 2.4(1+v)
\end{array}\right]
$$

$$
\begin{aligned}
& \bar{\epsilon}_{m \alpha}=B_{m \alpha} Q_{\bar{c}} \\
& \bar{\epsilon}_{b \alpha}=B_{b \alpha} q_{\alpha} \\
& \gamma_{s \alpha}=B_{s x} q_{\alpha} \\
& q_{\alpha}=\left\{\begin{array}{c}
u_{0 \alpha} \\
v_{0 \alpha} \\
\omega_{0 \alpha} \\
F_{y_{\alpha} \alpha} \\
p_{\alpha a}
\end{array}\right\} \\
& \begin{array}{l}
u_{0 \alpha} \\
v_{0 \alpha} \\
w_{0 \alpha} \\
\beta_{y \alpha} \\
\beta_{x \alpha}
\end{array}=\sum_{i=1}^{N}\left[\begin{array}{l}
h_{i}(r, s) \\
h_{i \alpha} \\
h_{i}(r, s) \\
h_{i \alpha} \\
h_{i}(r, s) \\
w_{i \alpha} \\
-h_{i}(r, s)
\end{array} \theta_{x \alpha}\right] \\
& h_{i}(r, s) \quad v_{y, k}
\end{aligned}
$$

$$
\begin{gathered}
=\sum_{i=1}^{N}\left[\left.\begin{array}{ccccc}
h_{i} & 0 & 0 & 0 & 0 \\
0 & h_{i} & 0 & 0 & 0 \\
0 & 0 & h_{i} & 0 & 0 \\
0 & 0 & 0 & -h_{i} & 0 \\
0 & 0 & 0 & 0 & h_{i}
\end{array} \right\rvert\, \begin{array}{l}
u_{i \alpha} \\
r_{i \alpha} \\
w_{i \alpha} \\
\theta_{i \times \alpha} \\
v_{i \dot{\alpha}}
\end{array}\right\} \\
\underset{\sim}{q_{\alpha \alpha}}=\sum_{i=1}^{N} h_{i} q_{i \alpha}
\end{gathered}
$$

Let displacement at node ' i ' un nodal cool system

$$
\begin{aligned}
& q_{i n}=\left[u_{o n} v_{o n} W_{o n} \theta_{x n} \theta_{y n}\right] \\
& q_{i \alpha}=R_{\alpha_{i}} q_{\text {in }} \\
& q_{\alpha}=\sum_{i=1}^{N} h_{i} R_{\alpha_{i}} q_{i n} \\
& R_{n=}=\left[\begin{array}{ccccccc}
i_{1} \cdot i_{n} & i_{2} \cdot j_{n} & i_{2} \cdot k_{n} & 0 & 0 \\
j_{x} \cdot i_{n} & i_{x} \cdot j_{n} & j_{2} \cdot k_{n} & 0 & 0 \\
k_{2} \cdot i_{n} & k_{2} \cdot j_{n} & k_{2} \cdot k_{n} & 0 & 0 \\
0 & 0 & 0 & i_{1} \cdot i_{n} & i_{1} \cdot i_{n} \\
0 & 0 & 0 & j_{2} \cdot i_{n} & j_{2} \cdot i_{n}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\epsilon_{m \alpha} & =\alpha_{m \alpha} q_{\alpha}=\alpha_{m \alpha} \sum_{i=1} h_{i} q_{i \alpha} \\
& =\sum_{n=1}^{N} B_{m i \alpha} q_{i \alpha} \\
& =\sum_{i=1}^{N} B_{m i \alpha} R_{i \alpha} q_{i n} \\
& =\sum_{i=1}^{n} B_{m i}^{*} q_{i n}=\left[B_{m}^{*}\right]\left\{q_{n}\right\}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \epsilon_{b \alpha}=\left[B_{b}^{*}\right]\left\{q_{n}\right\} \\
& \epsilon_{s \alpha}=\left[B_{s}^{*}\right]\left\{q_{n}\right\} \\
& \begin{array}{c}
\bar{\epsilon}_{\alpha} \\
=\left[B^{*}\right]\left\{q_{n}\right\} \\
\\
=\left[B_{n}^{*} B_{s}^{*} \varepsilon_{s}^{*}\right]^{\top}\{q\}
\end{array}
\end{aligned}
$$

You may notice that we have ignored a sixth row in R matrix. Actually, it should also be there and would transform the rotation $\theta_{\mathrm{x} \alpha}$ and $\theta_{\mathrm{y} \alpha}$ along the normal at the node. The normal at a node does not really coincide with normal at $\left(\mathrm{x}_{\alpha}, \mathrm{y}_{\alpha}, \mathrm{z}_{\alpha}\right)$. However this component of rotation along node normal may be small as angle between the node normal and normal at $\left(\mathrm{x}_{\alpha}, \mathrm{y}_{\alpha}, z_{\alpha}\right)$ may be small. By rotating to nodal coordinate system continuity of variables ($u_{n}, v_{n}, w_{n}, \alpha, \beta$) is maintained.

- Instead of rotating to nodal coordinate system we can also rotate to global coordinate system and we have six dofs.

$$
\mathbf{K}^{e}=\int_{A} \mathbf{B}^{*} \mathbf{D}_{\boldsymbol{2}}^{e} \mathbf{B}^{*} \mathrm{~d} A
$$

$$
\mathbf{K}^{c}=\mathbf{K}_{m}^{e}+\mathbf{K}_{b}^{c}+\mathbf{K}_{s}^{c},
$$

Here $\mathbf{K}_{m}^{e}, \mathbf{K}_{b}^{r}, \mathbf{K}_{s}^{e}$ are the element membrane, bending and shear stiffness matrices, respectively, m is the

$$
\mathbf{K}_{m n}^{e}=\int_{-1}^{+1} \int_{-1}^{+1} \mathbf{B}_{m}^{*} \mathbf{D}_{m z} \mathbf{B}_{m \mid}^{*}|\mathbf{J}| \mathrm{d} \xi \mathrm{~d} \eta
$$ number of Gauss points and w_{p} are the weights of Gauss points. Thus, any order of integration (either

$$
\mathbf{K}_{m}^{e}=\sum_{\beta=1}^{m} w_{\beta}\left(\mathbf{B}_{m}^{*}\right)_{\beta}^{\prime}\left(\mathbf{D}_{m z}\right)_{\beta}\left(\mathbf{B} \mathbf{B}_{m}^{*}\right)_{\beta}|\mathbf{J}|_{\beta},
$$ 2×2 or 3×3) can be independently applied to calculate any of the individual K matrix.

$\mathbf{K}_{h}^{e}=\sum_{\beta=1}^{m} w_{f}\left(\mathbf{B}_{h}^{* \prime}\right)_{\beta}\left(\overline{\mathbf{D}}_{h z}\right)_{f}\left(\overline{\mathbf{B}}_{h}^{*}\right)_{\beta}|\mathbf{J}|_{\beta}$
$K_{s}^{e}=\sum_{\beta=1}^{m} w_{\beta}\left(\mathbf{B}_{s}^{* \prime}\right)_{\beta}\left(\mathbf{D}_{s z}\right)_{\beta}\left(\mathbf{B}_{s}^{*}\right)_{\beta} \mid \mathbf{J}_{\beta}$.

Lood vector

Boty ferces

$$
\int\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{l}
-\rho g_{r_{x}} \\
-\rho g_{y_{\alpha}} \\
-\rho g_{2 \alpha}
\end{array}\right\} d x_{\alpha} d y_{\alpha} d z_{\alpha}
$$

$$
\begin{aligned}
& =\int\left[\begin{array}{lll}
u_{01} & v_{0 x} & u_{\alpha}
\end{array}\right]\left[\begin{array}{l}
-9 \gamma_{x \alpha} \\
-9 \gamma_{y_{\alpha}} \\
-9 \gamma_{z \alpha}
\end{array}\right] d x_{\alpha} d y_{\alpha} d z_{\alpha} \\
& \left.\begin{array}{r}
+\iint_{-H_{2}}^{t / 2}\left[-z \beta_{x}-z_{2}\right. \\
0 \quad\left(\left.\because \frac{z^{2}}{2}\right|_{-\beta_{2}} ^{H_{2}}=0\right)
\end{array}\right] d d z_{\alpha} \\
& =\int\left[\begin{array}{lll}
u_{0 \alpha} & v_{0 x} & \omega_{0 \alpha}
\end{array}\right]\left[\begin{array}{l}
-\rho_{2} \\
-\rho_{g_{2}} \\
-\rho \partial_{2 \alpha}
\end{array}\right] t d x_{k} d y \\
& =\int\left[\begin{array}{ll}
& q_{\alpha}
\end{array}\right]\left[\begin{array}{ccc}
h_{1} & 0 & 0 \\
0 & h_{1} & 0 \\
\vdots & 0 & h_{1} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
h_{2} & 0 & 0 \\
\vdots & h_{2} & 0 \\
0 & 1 & h_{2}
\end{array}\right]\left\{\begin{array}{l}
-\rho g_{x_{2}} \\
-\rho g_{y_{k}} \\
-\rho d_{z \alpha}
\end{array}\right\} t d x_{x} d y_{2}
\end{aligned}
$$

Simelarly for presoune

$$
\int\left[q_{\alpha}\right]\left\{\begin{array}{c}
0 \\
0 \\
h_{1} \\
0 \\
0 \\
0 \\
0 \\
h_{1}
\end{array}\right\} d x_{\alpha} d y_{\alpha}
$$

The sheye furs ane in tarms of (r, s) coord. whereas integratuon is in terms of x_{x}, y_{k}, no we nel Jawbian. Atro $i_{k}, \jmath_{\alpha}, k$ are related to i, j, k.

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{\alpha}}{\partial r} & \frac{\partial y_{\alpha}}{\partial r} \\
\frac{\partial x_{\alpha}}{\partial s} & \frac{\partial y_{\alpha}}{\partial s}
\end{array}\right|
$$

- The coordinates x, y in terms of nodal coordinates are given below. On the mid-plane put $\mathrm{t}=0$ in the expressions below.
- Loads at the boundary due to moments or transverse loads can be resolved into moments or forces in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

Gauss point
Top surface
scoordinate line (r, t are constant)

- r-coordinate line (s, t are constant)

Midsurface
$\mathbf{r}, \mathbf{s}, \mathbf{t}=$ vectors tangent
to r, s, t coordinate lines

$$
e_{7}=\frac{s \times t}{\|s \times t\|_{2}} ; e_{\mathbf{3}}=\frac{t \times e_{7}}{\left\|t \times e_{7}\right\|_{2}} ; e_{t}=\frac{t}{\|t\|_{2}}
$$

Bottom surface
Figure 5.33 (continued)

$$
\begin{align*}
& { }^{\ell} x(r, s, t)=\sum_{k=1}^{q} h_{k}{ }^{e} x_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k}{ }^{e} V_{n x}^{k} \\
& { }^{\ell} y(r, s, t)=\sum_{k=1}^{q} h_{k}{ }^{\ell} y_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k}{ }^{e} V_{n y}^{k} \tag{5.107}\\
& { }^{\ell} z(r, s, t)=\sum_{k=1}^{q} h_{k}{ }^{e} z_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k}{ }^{e} V_{n z}^{k}
\end{align*}
$$

${ }^{e} x,{ }^{\ell} y,{ }^{\prime} z=$ Cartesian coordinates of any point in the element ${ }^{e} x_{k},{ }^{\prime} y_{k},{ }^{\prime} z_{k}=$ Cartesian coordinates of nodal point k
$a_{k}=$ thickness of shell in t direction at nodal point k
${ }^{e} V_{n,}^{k},{ }^{\ell} V_{n y}^{k},{ }^{e} V_{n z}^{k}=$ components of unit vector ${ }^{\ell} \mathbf{V}_{n}^{k}$ "normal" to the shell midsurface in direction t at nodal point k; we call ${ }^{e} \mathbf{V}_{n}^{k}$ the normal vector' or, more appropriately, the director vector, at nodal point k
$\ell=0$ and 1 denote the original and final configurations of the shell

$$
\begin{aligned}
& u(r, s, t)=\sum_{k=1}^{q} h_{k} u_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} V_{n x}^{k} \\
& v(r, s, t)=\sum_{k=1}^{q} h_{k} v_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} V_{n y}^{k} \\
& w(r, s, t)=\sum_{k=1}^{q} h_{k} w_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} V_{n z}^{k}
\end{aligned}
$$

Axisymmetric shell (HW)
For a 3-node axisymmetric shell element

$$
\gamma_{2} \cdot i=\cos \gamma
$$

ete.

Let θ_{a} be the rotatum of the normal about the k_{α} axis
k_{α} is perpendicular to plane of paper

Following the procedure followed for shell element, determine the membrane and bending strain in r - y coordinate system. Hence determine the stiffness matrix.

Bear K.E and Mass Matrix

$$
\begin{aligned}
& =\frac{1}{2} \int \rho\left(\dot{u}^{2}+\dot{w}^{2}\right) d r \\
& =\frac{1}{2} \int \rho\left(\dot{u}^{\top} \dot{u}+\dot{w}^{\top} w\right) b d z d x \\
& =\frac{1}{2} \iint_{L-y_{2}}^{L_{2}} 1\left(-z \frac{d \dot{\beta}}{I_{x}}\right)^{\top}\left(-z \frac{d \dot{\beta}}{d x}\right) b d z d x \\
& +\frac{1}{2} \int_{L-\psi_{2}}^{L_{2}} p \dot{w}^{\top} \dot{\omega} b d z d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \iint \rho z^{2}\left[\begin{array}{llll}
\dot{w}_{1} & \dot{w}_{2} & \dot{\beta}_{1} & \dot{\beta}_{2}
\end{array}\right] H_{B}^{\top} H_{3}\left[\begin{array}{l}
\dot{w}_{1} \\
\dot{w}_{2} \\
\dot{\beta}_{1} \\
\dot{\beta}_{2}
\end{array}\right] b d z d x \\
& +\frac{1}{2} \int \rho[] H_{\omega}{ }^{\top} H_{\omega}[] b d x d x \\
& \left.M=\frac{1}{2} \int \frac{6 \rho t_{s}^{3}}{12}[\quad] H_{3}^{\top} H_{s}[] d x+\frac{1}{2}\right] p h[] H_{d}^{\top} H_{d x}[] \\
& M=\int\left[\begin{array}{l}
H_{w} \\
H_{3}
\end{array}\right]^{3}\left[\begin{array}{ll}
\rho b h_{1} & \\
& \frac{\rho b^{3}}{12}
\end{array}\right]\left[\begin{array}{l}
H_{w} \\
H_{b}
\end{array}\right]\left[\begin{array}{lr}
\operatorname{det} J
\end{array}\right.
\end{aligned}
$$

WW

Using shrilaw approach for shell show that

$$
\begin{aligned}
& E=\frac{1}{2} \int \dot{u}^{\top} \rho \dot{u_{q}} d r \\
&=\frac{1}{2} \int \dot{q}_{\alpha}^{\top} M \dot{q}_{\alpha} d A \\
& \mathbf{m}=\left[\begin{array}{ccccc}
I_{1} & 0 & 0 & 0 & I_{2} \\
0 & I_{1} & 0 & -I_{2} & 0 \\
0 & 0 & I_{1} & 0 & 0 \\
0 & -I_{2} & 0 & I_{3} & 0 \\
I_{2} & 0 & 0 & 0 & I_{3}
\end{array}\right] \quad I_{1}=\int \rho \mathrm{d} z ; I_{2}=\int \rho z \mathrm{~d} z ; I_{3}=\int \rho z * z \mathrm{~d} z .
\end{aligned}
$$

